:-'Generic Commit'
This commit is contained in:
464
dropshell-tool/openssl-1.1.1w/crypto/bn/bn_mont.c
Normal file
464
dropshell-tool/openssl-1.1.1w/crypto/bn/bn_mont.c
Normal file
@ -0,0 +1,464 @@
|
||||
/*
|
||||
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
/*
|
||||
* Details about Montgomery multiplication algorithms can be found at
|
||||
* http://security.ece.orst.edu/publications.html, e.g.
|
||||
* http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
|
||||
* sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
|
||||
*/
|
||||
|
||||
#include "internal/cryptlib.h"
|
||||
#include "bn_local.h"
|
||||
|
||||
#define MONT_WORD /* use the faster word-based algorithm */
|
||||
|
||||
#ifdef MONT_WORD
|
||||
static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont);
|
||||
#endif
|
||||
|
||||
int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
||||
BN_MONT_CTX *mont, BN_CTX *ctx)
|
||||
{
|
||||
int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx);
|
||||
|
||||
bn_correct_top(r);
|
||||
bn_check_top(r);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
||||
BN_MONT_CTX *mont, BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *tmp;
|
||||
int ret = 0;
|
||||
int num = mont->N.top;
|
||||
|
||||
#if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD)
|
||||
if (num > 1 && num <= BN_SOFT_LIMIT && a->top == num && b->top == num) {
|
||||
if (bn_wexpand(r, num) == NULL)
|
||||
return 0;
|
||||
if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
|
||||
r->neg = a->neg ^ b->neg;
|
||||
r->top = num;
|
||||
r->flags |= BN_FLG_FIXED_TOP;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((a->top + b->top) > 2 * num)
|
||||
return 0;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
tmp = BN_CTX_get(ctx);
|
||||
if (tmp == NULL)
|
||||
goto err;
|
||||
|
||||
bn_check_top(tmp);
|
||||
if (a == b) {
|
||||
if (!bn_sqr_fixed_top(tmp, a, ctx))
|
||||
goto err;
|
||||
} else {
|
||||
if (!bn_mul_fixed_top(tmp, a, b, ctx))
|
||||
goto err;
|
||||
}
|
||||
/* reduce from aRR to aR */
|
||||
#ifdef MONT_WORD
|
||||
if (!bn_from_montgomery_word(r, tmp, mont))
|
||||
goto err;
|
||||
#else
|
||||
if (!BN_from_montgomery(r, tmp, mont, ctx))
|
||||
goto err;
|
||||
#endif
|
||||
ret = 1;
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef MONT_WORD
|
||||
static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont)
|
||||
{
|
||||
BIGNUM *n;
|
||||
BN_ULONG *ap, *np, *rp, n0, v, carry;
|
||||
int nl, max, i;
|
||||
unsigned int rtop;
|
||||
|
||||
n = &(mont->N);
|
||||
nl = n->top;
|
||||
if (nl == 0) {
|
||||
ret->top = 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
max = (2 * nl); /* carry is stored separately */
|
||||
if (bn_wexpand(r, max) == NULL)
|
||||
return 0;
|
||||
|
||||
r->neg ^= n->neg;
|
||||
np = n->d;
|
||||
rp = r->d;
|
||||
|
||||
/* clear the top words of T */
|
||||
for (rtop = r->top, i = 0; i < max; i++) {
|
||||
v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1));
|
||||
rp[i] &= v;
|
||||
}
|
||||
|
||||
r->top = max;
|
||||
r->flags |= BN_FLG_FIXED_TOP;
|
||||
n0 = mont->n0[0];
|
||||
|
||||
/*
|
||||
* Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
|
||||
* input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
|
||||
* includes |carry| which is stored separately.
|
||||
*/
|
||||
for (carry = 0, i = 0; i < nl; i++, rp++) {
|
||||
v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2);
|
||||
v = (v + carry + rp[nl]) & BN_MASK2;
|
||||
carry |= (v != rp[nl]);
|
||||
carry &= (v <= rp[nl]);
|
||||
rp[nl] = v;
|
||||
}
|
||||
|
||||
if (bn_wexpand(ret, nl) == NULL)
|
||||
return 0;
|
||||
ret->top = nl;
|
||||
ret->flags |= BN_FLG_FIXED_TOP;
|
||||
ret->neg = r->neg;
|
||||
|
||||
rp = ret->d;
|
||||
|
||||
/*
|
||||
* Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap|
|
||||
* includes |carry| which is stored separately.
|
||||
*/
|
||||
ap = &(r->d[nl]);
|
||||
|
||||
carry -= bn_sub_words(rp, ap, np, nl);
|
||||
/*
|
||||
* |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note
|
||||
* |carry| cannot be 1. That would imply the subtraction did not fit in
|
||||
* |nl| words, and we know at most one subtraction is needed.
|
||||
*/
|
||||
for (i = 0; i < nl; i++) {
|
||||
rp[i] = (carry & ap[i]) | (~carry & rp[i]);
|
||||
ap[i] = 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif /* MONT_WORD */
|
||||
|
||||
int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
int retn;
|
||||
|
||||
retn = bn_from_mont_fixed_top(ret, a, mont, ctx);
|
||||
bn_correct_top(ret);
|
||||
bn_check_top(ret);
|
||||
|
||||
return retn;
|
||||
}
|
||||
|
||||
int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
int retn = 0;
|
||||
#ifdef MONT_WORD
|
||||
BIGNUM *t;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) {
|
||||
retn = bn_from_montgomery_word(ret, t, mont);
|
||||
}
|
||||
BN_CTX_end(ctx);
|
||||
#else /* !MONT_WORD */
|
||||
BIGNUM *t1, *t2;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
t1 = BN_CTX_get(ctx);
|
||||
t2 = BN_CTX_get(ctx);
|
||||
if (t2 == NULL)
|
||||
goto err;
|
||||
|
||||
if (!BN_copy(t1, a))
|
||||
goto err;
|
||||
BN_mask_bits(t1, mont->ri);
|
||||
|
||||
if (!BN_mul(t2, t1, &mont->Ni, ctx))
|
||||
goto err;
|
||||
BN_mask_bits(t2, mont->ri);
|
||||
|
||||
if (!BN_mul(t1, t2, &mont->N, ctx))
|
||||
goto err;
|
||||
if (!BN_add(t2, a, t1))
|
||||
goto err;
|
||||
if (!BN_rshift(ret, t2, mont->ri))
|
||||
goto err;
|
||||
|
||||
if (BN_ucmp(ret, &(mont->N)) >= 0) {
|
||||
if (!BN_usub(ret, ret, &(mont->N)))
|
||||
goto err;
|
||||
}
|
||||
retn = 1;
|
||||
bn_check_top(ret);
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
#endif /* MONT_WORD */
|
||||
return retn;
|
||||
}
|
||||
|
||||
int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx);
|
||||
}
|
||||
|
||||
BN_MONT_CTX *BN_MONT_CTX_new(void)
|
||||
{
|
||||
BN_MONT_CTX *ret;
|
||||
|
||||
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
|
||||
BNerr(BN_F_BN_MONT_CTX_NEW, ERR_R_MALLOC_FAILURE);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
BN_MONT_CTX_init(ret);
|
||||
ret->flags = BN_FLG_MALLOCED;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
|
||||
{
|
||||
ctx->ri = 0;
|
||||
bn_init(&ctx->RR);
|
||||
bn_init(&ctx->N);
|
||||
bn_init(&ctx->Ni);
|
||||
ctx->n0[0] = ctx->n0[1] = 0;
|
||||
ctx->flags = 0;
|
||||
}
|
||||
|
||||
void BN_MONT_CTX_free(BN_MONT_CTX *mont)
|
||||
{
|
||||
if (mont == NULL)
|
||||
return;
|
||||
BN_clear_free(&mont->RR);
|
||||
BN_clear_free(&mont->N);
|
||||
BN_clear_free(&mont->Ni);
|
||||
if (mont->flags & BN_FLG_MALLOCED)
|
||||
OPENSSL_free(mont);
|
||||
}
|
||||
|
||||
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
|
||||
{
|
||||
int i, ret = 0;
|
||||
BIGNUM *Ri, *R;
|
||||
|
||||
if (BN_is_zero(mod))
|
||||
return 0;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
if ((Ri = BN_CTX_get(ctx)) == NULL)
|
||||
goto err;
|
||||
R = &(mont->RR); /* grab RR as a temp */
|
||||
if (!BN_copy(&(mont->N), mod))
|
||||
goto err; /* Set N */
|
||||
if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
|
||||
BN_set_flags(&(mont->N), BN_FLG_CONSTTIME);
|
||||
mont->N.neg = 0;
|
||||
|
||||
#ifdef MONT_WORD
|
||||
{
|
||||
BIGNUM tmod;
|
||||
BN_ULONG buf[2];
|
||||
|
||||
bn_init(&tmod);
|
||||
tmod.d = buf;
|
||||
tmod.dmax = 2;
|
||||
tmod.neg = 0;
|
||||
|
||||
if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
|
||||
BN_set_flags(&tmod, BN_FLG_CONSTTIME);
|
||||
|
||||
mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2;
|
||||
|
||||
# if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32)
|
||||
/*
|
||||
* Only certain BN_BITS2<=32 platforms actually make use of n0[1],
|
||||
* and we could use the #else case (with a shorter R value) for the
|
||||
* others. However, currently only the assembler files do know which
|
||||
* is which.
|
||||
*/
|
||||
|
||||
BN_zero(R);
|
||||
if (!(BN_set_bit(R, 2 * BN_BITS2)))
|
||||
goto err;
|
||||
|
||||
tmod.top = 0;
|
||||
if ((buf[0] = mod->d[0]))
|
||||
tmod.top = 1;
|
||||
if ((buf[1] = mod->top > 1 ? mod->d[1] : 0))
|
||||
tmod.top = 2;
|
||||
|
||||
if (BN_is_one(&tmod))
|
||||
BN_zero(Ri);
|
||||
else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
|
||||
goto err;
|
||||
if (!BN_lshift(Ri, Ri, 2 * BN_BITS2))
|
||||
goto err; /* R*Ri */
|
||||
if (!BN_is_zero(Ri)) {
|
||||
if (!BN_sub_word(Ri, 1))
|
||||
goto err;
|
||||
} else { /* if N mod word size == 1 */
|
||||
|
||||
if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL)
|
||||
goto err;
|
||||
/* Ri-- (mod double word size) */
|
||||
Ri->neg = 0;
|
||||
Ri->d[0] = BN_MASK2;
|
||||
Ri->d[1] = BN_MASK2;
|
||||
Ri->top = 2;
|
||||
}
|
||||
if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
|
||||
goto err;
|
||||
/*
|
||||
* Ni = (R*Ri-1)/N, keep only couple of least significant words:
|
||||
*/
|
||||
mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
|
||||
mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0;
|
||||
# else
|
||||
BN_zero(R);
|
||||
if (!(BN_set_bit(R, BN_BITS2)))
|
||||
goto err; /* R */
|
||||
|
||||
buf[0] = mod->d[0]; /* tmod = N mod word size */
|
||||
buf[1] = 0;
|
||||
tmod.top = buf[0] != 0 ? 1 : 0;
|
||||
/* Ri = R^-1 mod N */
|
||||
if (BN_is_one(&tmod))
|
||||
BN_zero(Ri);
|
||||
else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
|
||||
goto err;
|
||||
if (!BN_lshift(Ri, Ri, BN_BITS2))
|
||||
goto err; /* R*Ri */
|
||||
if (!BN_is_zero(Ri)) {
|
||||
if (!BN_sub_word(Ri, 1))
|
||||
goto err;
|
||||
} else { /* if N mod word size == 1 */
|
||||
|
||||
if (!BN_set_word(Ri, BN_MASK2))
|
||||
goto err; /* Ri-- (mod word size) */
|
||||
}
|
||||
if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
|
||||
goto err;
|
||||
/*
|
||||
* Ni = (R*Ri-1)/N, keep only least significant word:
|
||||
*/
|
||||
mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
|
||||
mont->n0[1] = 0;
|
||||
# endif
|
||||
}
|
||||
#else /* !MONT_WORD */
|
||||
{ /* bignum version */
|
||||
mont->ri = BN_num_bits(&mont->N);
|
||||
BN_zero(R);
|
||||
if (!BN_set_bit(R, mont->ri))
|
||||
goto err; /* R = 2^ri */
|
||||
/* Ri = R^-1 mod N */
|
||||
if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL)
|
||||
goto err;
|
||||
if (!BN_lshift(Ri, Ri, mont->ri))
|
||||
goto err; /* R*Ri */
|
||||
if (!BN_sub_word(Ri, 1))
|
||||
goto err;
|
||||
/*
|
||||
* Ni = (R*Ri-1) / N
|
||||
*/
|
||||
if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx))
|
||||
goto err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* setup RR for conversions */
|
||||
BN_zero(&(mont->RR));
|
||||
if (!BN_set_bit(&(mont->RR), mont->ri * 2))
|
||||
goto err;
|
||||
if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx))
|
||||
goto err;
|
||||
|
||||
for (i = mont->RR.top, ret = mont->N.top; i < ret; i++)
|
||||
mont->RR.d[i] = 0;
|
||||
mont->RR.top = ret;
|
||||
mont->RR.flags |= BN_FLG_FIXED_TOP;
|
||||
|
||||
ret = 1;
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from)
|
||||
{
|
||||
if (to == from)
|
||||
return to;
|
||||
|
||||
if (!BN_copy(&(to->RR), &(from->RR)))
|
||||
return NULL;
|
||||
if (!BN_copy(&(to->N), &(from->N)))
|
||||
return NULL;
|
||||
if (!BN_copy(&(to->Ni), &(from->Ni)))
|
||||
return NULL;
|
||||
to->ri = from->ri;
|
||||
to->n0[0] = from->n0[0];
|
||||
to->n0[1] = from->n0[1];
|
||||
return to;
|
||||
}
|
||||
|
||||
BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
|
||||
const BIGNUM *mod, BN_CTX *ctx)
|
||||
{
|
||||
BN_MONT_CTX *ret;
|
||||
|
||||
CRYPTO_THREAD_read_lock(lock);
|
||||
ret = *pmont;
|
||||
CRYPTO_THREAD_unlock(lock);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* We don't want to serialise globally while doing our lazy-init math in
|
||||
* BN_MONT_CTX_set. That punishes threads that are doing independent
|
||||
* things. Instead, punish the case where more than one thread tries to
|
||||
* lazy-init the same 'pmont', by having each do the lazy-init math work
|
||||
* independently and only use the one from the thread that wins the race
|
||||
* (the losers throw away the work they've done).
|
||||
*/
|
||||
ret = BN_MONT_CTX_new();
|
||||
if (ret == NULL)
|
||||
return NULL;
|
||||
if (!BN_MONT_CTX_set(ret, mod, ctx)) {
|
||||
BN_MONT_CTX_free(ret);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* The locked compare-and-set, after the local work is done. */
|
||||
CRYPTO_THREAD_write_lock(lock);
|
||||
if (*pmont) {
|
||||
BN_MONT_CTX_free(ret);
|
||||
ret = *pmont;
|
||||
} else
|
||||
*pmont = ret;
|
||||
CRYPTO_THREAD_unlock(lock);
|
||||
return ret;
|
||||
}
|
Reference in New Issue
Block a user