# Generic Docker Images This repository contains reusable Docker base images for various purposes. ## Available Images ### debian-curl Debian with curl installed. ### accelerated_base A comprehensive base image with hardware acceleration support for ML/CV applications. **Features:** - Ubuntu 22.04 LTS base - Python 3.11 with pip - Intel QuickSync / VAAPI support for hardware video acceleration - NVIDIA CUDA support (when NVIDIA Container Toolkit is available) - FFmpeg with hardware acceleration codecs - OpenCV with Python bindings - PyTorch (CPU by default, GPU when NVIDIA runtime is available) - Common ML/CV Python packages (numpy, scipy, pandas, matplotlib, etc.) - Video and image codec libraries - Non-root user setup for security **Usage:** ```dockerfile FROM gitea.jde.nz/public/accelerated_base:latest # Your application-specific setup COPY your_app.py /app/ CMD ["python", "/app/your_app.py"] ``` **Hardware Acceleration:** - Intel QuickSync: Automatically available when `/dev/dri` is mounted - NVIDIA GPU: Automatically available when using `--runtime=nvidia` or `--gpus all` **Environment Variables:** - `LIBVA_DRIVER_NAME=iHD` - Intel Media Driver for VAAPI - `FFMPEG_HWACCEL_PRIORITY="vaapi,cuda,auto"` - Hardware acceleration preference - `NVIDIA_VISIBLE_DEVICES=all` - NVIDIA GPU visibility - `NVIDIA_DRIVER_CAPABILITIES=compute,utility,video` - NVIDIA capabilities **Size:** ~2.5GB (includes Python, ML libraries, and video codecs) ## Building Images are automatically built and published when pushed to this repository. ## Registry Images are available at: - `gitea.jde.nz/public/:latest` - `gitea.jde.nz/public/:latest-` (architecture-specific)